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S. sanguinis biofilms in comparison of two test models

In vitro Wirksamkeit von kaltem Atmosphärendruckplasma gegen S.
sanguinis Biofilme im Vergleich zweier Prüfmodelle
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Zusammenfassung

Die dentale Plaque beeinflusst entscheidend die Ätiologie von Karies,
Parodontitis und Periimplantitis. Die Plaque stellt nach wie vor eine
therapeutische Herausforderung dar, weil ihre Eliminierung durch me-
chanische Reinigung aufgrund der schweren Zugänglichkeit nur unvoll-
ständig gelingt. Antiseptische Mundspülungen können zwar über die
Senkung der Bakterienzahl das Plaquewachstum hemmen, allerdings
ohne dabei die Plaque selbst zu eliminieren. Darüber hinaus sind nur
wenige antiseptische Wirkstoffe aufgrund möglicher Nebenwirkung für
die Daueranwendung geeignet.
Alsmögliche Option zur Inaktivierung derMikroorganismen in der Plaque
bei gleichzeitiger Plaqueelimination wurde die Anwendung von Argon-
plasma, erzeugt mit dem kinpen09, an S. sanguinis Biofilmen, kultiviert
im Europäischen Biofilmreaktor (EUREBI) bzw. in der 24-Well-Platte,
untersucht. In beiden Modellen konnte auf Titanplättchen innerhalb
von 72 h ein homogener, stabiler, gut analysierbarer Biofilm (>6,9 log10
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KbE/ml) erzeugt werden. Trotz der signifikant stärkeren Biofilmbildung
im EUREBI war die erzielte Differenz von 0,4 log10 KbE/ml ohne prakti-
sche Relevanz, so dass beide Prüfmodelle gleichermaßen zur Erprobung
der Wirksamkeit von Plasmaquellen geeignet sind.
Verglichen mit der Kontrolle war in beiden Biofilmmodellen nach der
längsten gewählten Einwirkungszeit von 180 s eine signifikante Reduk-
tion des Biofilms um 0,6 log10 KbE/ml bzw. 0,5 log10 KbE/ml erreichbar.
Im Vergleich zur Wirksamkeit des kinpen09 in anderen Studien bildet
S. sanguinis offensichtlich einen schwierig eliminierbaren Biofilm aus,
wobei die Reifungszeit des Biofilms sowie andere Plasmazusammenset-
zungen und Behandlungseinstellungen die vergleichsweise geringe Ef-
fektivität beeinflusst haben dürften.
Um die Wirksamkeit gegen S. sanguinis Biofilme zu verbessern, sind
weitere Untersuchungenmit reduziertemAbstand zwischen Plasmaquel-
le und Biofilm, veränderter Zusammensetzung des Plasmas sowie mit
anderen Plasmaquellen erforderlich.

Schlüsselwörter: S. sanguinis Biofilm, Biofilmreaktor,
Mikrotiterplattenbiofilmmodell, kaltes Atmosphärendruckplasma,
Argonplasma, kinpen09

Introduction
Dental plaque not only affects the etiology of caries and
periodontitis [1], [2], [3], [4], [5], [6], [7], but it can also
induce perimucositis or periimplantitis, and thereby
jeopardize positive long-term effects of dental implants
[8]. Thus it is crucial to remove biofilms from dental im-
plants, as done in periodontal treatments, in order to
prevent or treat periimplant infections [9], [10], [11].
For many decades scientists have searched for efficient
ways to remove, delete or prevent dental plaque [12].
The most common practice to remove plaque is mechan-
ical cleaning [5], that can be improved by combination
with chemical agents, sonication and the application of
magnetization force or an electric field [7], [13]. However,
all combinations have their flaws. Mechanical cleaning
can only partially remove dental plaque due to the limited
accessibility of various biofilms [13], [14]. Themechanical
removal of plaque from implants by curets or sonication
damages the abutments [15]. Antiseptic mouthrinses
can cause problems after long-term usage [16]. Side ef-
fects such as unpleasant taste, discoloration of teeth or
desquamation und painful mucosa are described for
chlorhexidine [17], the gold standard of plaque control
[13], [18]. Furthermore, chlorhexidine caused pre-malig-
nant alterations in animal experiments [19].
Therefore, it is essential to develop novel techniques for
plaque removal. One of the most recent innovations is
cold atmospheric pressure plasma [20]. The possibility
of removing biofilms and inactivating microorganisms in
biofilmswith cold atmospheric pressure plasma, so-called
tissue-tolerable plasma, could improve the removal of
plaque in the mouth, particularly from gingival pockets
hardly to access [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31]. Cold atmospheric pressure plasma
could also enhance elimination of biofilms during surgery
of infected implants [32]. Furthermore, plasma can be
considered supportive for the treatment of periimplantitis

[31], since it stimulates growth of osteoblasts and im-
proves the reossification process of dental implants.
Many in vitro models for testing the efficacy against
biofilms are expensive, complicated and do not provide
sufficiently reproducible results [33]. In addition, vari-
ations in culture systems and bacterial species make the
direct comparison between different studies difficult [34].
For that reason it is important to develop novel in vitro
models generating reproducible, good analyzable and
homogeneous biofilms.
One goal of this study was the comparison of the
European Biofilm Reactor (EUREBI), an advancement of
the CDC reactor [35], with the conventional 24 well plate
with respect to biofilm production. EUREBI possesses
three inlets for different nutrient solutions instead of only
two as the CDC reactor. The friction of the stirrer between
glass bottom and impeller is decreased in EUREBI due
to its flat bottom. Therefore the speed of stirring can be
controlled more precisely. Per cycle 40 instead of 24 test
samples can be applied. Since themechanically exposed
pieces are made of stainless steel, the service life (dura-
bility) of EUREBI is extended. Furthermore, the Luerlock-
System allows installation of sterile tube systems. The
entire EUREBI can be completely cleaned and autoclaved.
We assume that EUREBI is the more effective system to
produce biofilms. In both test systems biofilm production
was analyzed on titan surfaces, because this material is
widely used in the field of implantology [8]. The primary
colonizer of dental plaque chosen for the present study
was the bacterial species S. sanguinis [1], [2], [12], [36],
[37], [38], [39], [40], [41]. Providing that both test sys-
tems, EUREBI and 24 well plates, were capable of stable
biofilm production, the purpose of this work was the
analysis of the efficacy of cold atmospheric pressure
plasma against those stable biofilms and to compare the
two biofilm reactors.

2/9GMS Hygiene and Infection Control 2013, Vol. 8(1), ISSN 2196-5226

Gorynia et al.: In vitro efficacy of cold atmospheric pressure plasma ...



Material and methods

Testorganism

S. sanguinis DSM 20068 was cultivated in brain heart
infusion (BHI) (BBL™, Becton Dickinson GmbH, Heidel-
berg, Germany) supplemented with 1% sucrose (Merck,
Darmstadt, Germany). One inoculation loop of cells was
re-suspended in 100ml BHI. The liquid culture was incub-
ated at 37° C for 48 h.

EUREBI biofilm model and biofilm
evaluation

Figure 1: Experimental setup. On the left European Biofilm
Reactor (EUREBI) with vertical placed titanium discs, on the
right infusion bag as storage vessel for liquid culture, in the

middle Infusomat to control the flow of liquid culture.

100ml of the 48 h liquid culture and 550ml of fresh BHI
were added to the biofilm reactor. Afterwards, 5 titanium
discs (15 mm diameter, 1 mm thickness, Institut Strau-
mann AG, Basel, Switzerland) were fixed in one reactor
bar and placed in the reactor. The reactor was coated for
24 h. Flow of the liquid culture was started and controlled
by Infusomat fmS (B. Braun AG, Melsungen, Germany)
with 18.6 ml/h. The used medium was transferred out
of the reactor system by the Infusomat. In addition the
medium was mixed using a magnetic stirrer (IKA RCT
basic, IKA®-Werke GmbH & Co. KG, Staufen, Germany)
with a speed of 50 rpm and heated on a plate at 37°C.
For adjustment of temperature, a measuring sensor was
inserted into the reactor (Figure 1). The number of colony
forming units (CFU) were determined at 0 h, 24 h, 48 h

and 72 h (per exposure time n = 5 discs). After 72 h
stable biofilm was established.
In order to analyze the biofilm culture the titanium discs
were washed one time with 0.89% NaCl solution to re-
move not adherent cells and placed into a 24 well plate.
1 ml of 0.89% NaCl solution was added to each well.
The biofilm was removed by treatment in an ultrasonic
bath (Branson 2510, 130 W, 42 kHz, Mississauga,
Canada) for 30 minutes. Serial dilutions of 100 µl of re-
suspended biofilm solutions were transferred to 900 µl
fresh 0.89% NaCl solution. An aliquot portion of 100 µl
from serial dilutions 10–3, 10–4 and 10–5 was plated on
Columbia sheep blood agar (BBL™, Becton Dickinson
GmbH, Heidelberg, Germany) and incubated at 37°C for
48 h. The CFU were determined with a colony counter
(Bibby Scientific Ltd, Stone, UK), calculated in accordance
with DIN EN 1040 [42] and expressed in the common
logarithmic scale as CFU/ml. The reduction factor (RF)
was calculated by subtraction of the treated samples
from the mean of untreated control samples. Statistical
analyses were performed by the Wilcoxon-Mann-Whitney
test with Bonferroni correction for α=0.05 (Statview 5.0,
SAS Institute GmbH, Heidelberg, Germany).
For photometric detection the biofilm-covered discs were
colored with 0.1% crystal violet solution (Carl Roth GmbH,
Karlsruhe, Germany). 500 µl solution was pipetted into
each well onto the discs. After an incubation period of 15
min, each disc was washed 3 times with 1ml 0.89%NaCl
solution to rinse unbound stain. 500 µl of an ethanol HCl
mixture (Merck, Darmstadt, Germany) was pipetted into
each well to elute the crystal violet. After an incubation
time of 15min, 200 µl of the eluate were transferred into
wells of a 96 well microplate. The extinction was detected
at 620 nm (Microplate ELISA-Reader 2020, anthos,
Microsystems GmbH, Krefeld, Germany).

Microtiter plate biofilm model

The liquid culture, prepared analog to EUREBI liquid cul-
ture, was incubated for 24 h (37°C) instead of 48 h. After
24 h, 1 ml of the liquid solution was pipetted into each
well of a 24 well plate (Plastic Techno Products Ltd.,
Trasadingen, Switzerland). One titanium disc was placed
in each well. As negative control 10 titanium discs were
not inoculated with the liquid culture, but only covered
with BHI. At time point 0 h and after an incubation period
of 24 h, 48 h and 72 h, respectively, serial dilutions were
made in order to determine the CFU/ml. After 72 h a
stable biofilm was established as in EUREBI. Measure-
ment of CFU and photometric detection of the biofilm was
performed as described for the EUREBI.

Plasma application

For plasma generation, the plasma jet kinpen09 (Neoplas
GmbH, Greifswald, Germany) was used with argon as
carrier gas in continuous mode [43] with a gas flow of
5 standard liters/min (slm), a frequency of 1.8 MHz and
a voltage of 170 V.
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Gas flow was controlled by a flow controller (MKS Instru-
ments, Munich, Germany). Titanium discs covered with
the 72 h old biofilm of both models were transferred for
plasma treatment into 24 well plates. The plasma source
was attached to a computer-controlled x/y/z table and
the 24 well plate was positioned below. Additional titani-
um discs were placed in each well under the exposed
disc for storing the samples higher. Therefore the distance
between the top disc and the plasma source was 10mm.
The kinpen09 moved meander-like in a diameter of
15 mm over each well (Figure 2). All six titanium discs
were treated with plasma for a period of 30 s, 60 s, 90 s,
120 s and 180 s. Six samples were treated only with ar-
gon gas as “gas flow” control and 6 untreated samples
served as negative control.

Figure 2: Experimental setup: Exposure of plasma jet kinpen09
(Neoplas GmbH, Greifswald, Germany) with argon as carrier

gas on titanium plates in the 24 well plate

Results

EUREBI

After 72 h of cultivation the mean value was 7.3 log10
CFU/ml (±0.24). This demonstrates a homogeneous
biofilm. Also with photometric determination a uniform
biofilm growth was detected (mean 1.34±0.173).
In EUREBI efficacy was shown already after 90 s
(p=0.0052). With the application of plasma we achieved
a reduction of 0.3 log10 compared to untreated control.
After 180 s the reduction was 0.58 log10 (Figure 3).

Microtiter plate model

In agreement with the EUREBI results a homogeneous
biofilm formation was observed after 72 h (mean 6.9 log10
CFU/ml, ±0.48). Results of the photometric detection
method accord with the results of the cultural biofilm
analysis (mean of extinction 1.22±0.197).
In the microtiter plate model the effectiveness of plasma
application was slightly lower than in the EUREBI model,
so that the difference to the untreated control was 0.37
log10 CFU/ml after 120 s (p=0.009). After 180 s the re-
duction reached 0.5 log10 CFU/ml (Figure 4).

Discussion

Biofilm production

Biofilm reactors simulate the natural salivation due to
the change of media [44], [45], [46]. It is feasible to
generate a flow-through system by influx and efflux using
the continuous flow technique. This is crucial for biofilm
production guaranteeing a steady state [47].
The Constant Depth Film Fermenter (CDFF) allows a
comparable simulation of biofilm production and excellent
reproducibility [14], [48], [49], [50], [51], [52], [53], [54].
A biofilm of a certain thickness can be produced by a
permanently installed scraper. However, the stationary
phase is only achieved after 100 h [55]. Relatively high
costs are another disadvantage of the CDFF [52].
Comparing the EUREBI model with the microtiter plate
model the mean extent of biofilm formation was signifi-
cant different for the cultural and the photometric detec-
tionmethod (Wilcoxon-Mann-Whitney test p≤0.0001 and
p=0.0282). Despite the significantlymore powerful biofilm
production in EUREBI, the difference of 0.4 log10 CFU/ml
is from biological perspective not relevant. Due to this
fact and the lower experimental effort, themicrotiter plate
model should be preferred. However using the EUREBI
various factors influencing the growth of biofilm can be
checked, which can be not modulate with a conventional
24 well plate.
In agreement with results obtained by Duarte et al. [8],
Astasov-Frauenhoffer et al. [56] and Hauser-Gerspach et
al. [57] S. sanguinis DSM 20068 produced a consistent
biofilm on titanium surfaces.
S. sanguiniswas chosen as test species because it is not
only highly relevant for plaque production, but also at-
taches to surfaces 10 to 100 times stronger than
S.mutans, S. mitis and S. salivarius, and generates stable
biofilms [36]. In addition, S. sanguinis has a fast metabol-
ic ratio and therefore rapidly reaches high cell densities
[58], [59].
The BHI mediumwas supplemented with 1% Saccharose
in order to improve surface adherence and synthesis of
exopolysaccharides [2], [4], [15], [39], [46], [50], [58],
[60], [61], [62], [63]. In numerous studies saliva is used
as nutrient solution. However, the composition of saliva
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Figure 3: Efficacy of argon plasma on S. sanguinis biofilms grown in EUREBI: means of CFU/ml (M), n=6 per treatment mode,
error bars: standard deviation (SD)

Figure 4: Efficacy of argon plasma on the S. sanguinis biofilm produced in 24well plate: means of CFU/ml (M), n=6 per treatment
mode, error bars: standard deviation (SD)

is complex [7] which makes standardization of this medi-
um very difficult. Also, sterilization of saliva is challenging.
An additional important factor for biofilm growth is the
incubation time. Herles et al. [45] and Oliveira et al. [64]
showed that the quantity of bacteria increases in up to
72 h of cell culture. During this period deviations in biofilm
production were minimal [65]. Wirthin et al. [53]
demonstrated that only after 100 h incubation time the

steady state was reached. Despite the quantitative in-
crease some authors consider biofilms after 48 h or even
less incubation time as sufficient for routine experiments
[8], [23], [46], [58], [66], [67]. A cell culture period of
72 hours is advantageous though, since resistance
against antimicrobial agents was at its maximum after
72 h [64], [68] and the plaque milieu only becomes
caries-producing after 72 h [1], [6], [39], [69], [70].
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Since more than 500 species of bacteria are present in
dental plaque [71], it is recommended that bacterial
suspension used for biofilm production experiments
should contain six [72], nine or ten different species [7],
[51], [60], [73], [74]. However, Bowden [4] showed that
mono- and multispecies biofilms do not differ regarding
sequence of biofilm development and cell counts. Cost-
erton et al. [75] accepted both mono- and multispecies
biofilms to test the antibiofilm activity. The results of the
present study demonstrate that bothmonospecies biofilm
models using S. sanguinis exhibit a strong capability of
resistance. Both biofilms tested were only partially re-
duced by plasma treatment. For that reason,monospecies
models are a suitable system to screen the efficacy of
argon plasma.

Efficacy of plasma source

In both test models the longest exposition of 180 s resul-
ted in reductions of 0.6 log10 CFU/ml (EUREBImodel) and
0.5 log10 CFU/ml (microtiter plate model). We conclude
that biofilms generated by both models exhibit compar-
able stability towards argon plasma. The antimicrobial
efficacy determined here is low compared to results of
other studies using the same plasma source but different
monospecies biofilms [29], [76]. It is important tomention
that the reduction of 2–4 log10 CFU/plate depending on
the test organism was observed by Daeschlein et al. [76]
under different basic conditions. The exposure time was
3 min longer than the time in the present study. Colonies
grown on agar plates were investigated instead biofilm.
The distance between sample and plasma source was
only 1 mm compared with 10 mm in our study. The
colonies were exposed to plasma already after 24 h of
cultivation instead of 72 h. Koban et al. [15] obtained a
reduction factor of 3.2 log10 CFU/ml using S. mutans
biofilms treated with kinpen09 for 60 s with a sample-
plasma source distance of 7mm. However, not the entire
plate was meander-like treated, but only one isolated
point was exposed. Also, the diameter of the titanium
plates was only 5mm instead of 15mmas in the present
study. In agreement with our data, a lower reduction of
0.5 log10 CFU/ml after 2 min exposure was achieved by
Koban et al. [30] using kinpen09 and a C. albicans
biofilm. According to data in the literature S. sanguinis
plays a particular role regarding the resistance towards
plasma [25] and other antimicrobial agents like gaseous
ozone [57].
In order to optimize removal of S. sanguinis biofilms, a
shorter distance between sample and plasma and an
oxygen-admixture to argon plasma could be useful, be-
cause these factors influence the efficacy [30], [77].

Conclusions
The difference in the biofilm production between EUREBI
and microtiter plate was from the biological perspective
not relevant. For that reason both testmodels are suitable

for the analysis of efficacy of cold atmospheric pressure
plasma.
Further in vitro und in vivo investigations are necessary
to evaluate the use of atmospheric pressure plasma for
plaque inactivation in dentistry. This will allow identifica-
tion of influencing factors for optimization of biofilm inac-
tivation. At the same time possible risks for the patient
need to be determined, especially mutagenesis and car-
cinogenesis have to be excluded [78].
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